Distinct structural and dynamical difference between supercooled and normal liquids of hydrogen molecules.
نویسندگان
چکیده
Supercooled hydrogen liquid as well as superfluid have continued to elude experimental observation due to rapid crystallization. We computationally realized and investigated supercooled hydrogen liquid by a recently developed non-empirical real-time molecular dynamics method, which describes non-spherical hydrogen molecules with the nuclear quantum effects. We demonstrated that the hydrogen supercooled liquid is not a simply cooled liquid but rather exhibits intrinsic structural and dynamical characters including a precursor of tunneling and superfluidity which neither normal hydrogen liquid nor solid possesses. All of the insights provide a milestone for planning experiments of metastable hydrogen systems like glassy and superfluid states and for identifying various unknown hydrogen phases.
منابع مشابه
Barrier Softening near the onset of Non-Activated Transport in Supercooled Liquids: Implications for Establishing Detailed Connection between Thermodynamic and Kinetic Anomalies in Supercooled Liquids
According to the Random First Order Transition (RFOT) theory of glasses, the barriers for activated dynamics in supercooled liquids vanish as the temperature of a viscous liquid approaches the dynamical transition temperature from below. This occurs due to a decrease of the surface tension between local meta-stable molecular arrangements much like at a spinodal. The dynamical transition thus re...
متن کاملA universal origin for secondary relaxations in supercooled liquids and structural glasses
Nearly all glass forming liquids display secondary relaxations, dynamical modes seemingly distinct from the primary alpha relaxations. We show that accounting for driving force fluctuations and the diversity of reconfiguring shapes in the random first order transition theory yields a low free energy tail on the activation barrier distribution which shares many of the features ascribed to second...
متن کاملDynamic signature of molecular association in methanol.
Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD3OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates fr...
متن کاملA many-body stochastic approach to rotational motions in liquids: complex decay times in highly viscous fluids *
Reorientational relaxation in complex liquids is still lacking a unified treatment that is capable of dealing with the relevant stochastic processes without excessive complications. A significant challenge is offered by the study of highly viscous, glassy and supercooled liquids. Rotational relaxation of flexible short chain and small rigid molecules in supercooled organic liquids have been stu...
متن کاملLength scale for the onset of Fickian diffusion in super- cooled liquids
– The interplay between self-diffusion and excitation lines in space-time was recently studied in kinetically constrained models to explain the breakdown of the Stokes-Einstein law in supercooled liquids. Here, we further examine this interplay and its manifestation in incoherent scattering functions. In particular, we establish a dynamic length scale below which Fickian diffusion breaks down, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2016